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the awthor's
fw§ This report is the result of my investigations into the
XS]
554 numerical solution of ordinary and partial differential
v 2
L equations. Green's Functions were used to convert the
_*S . differential equations into integral form. The method of
'*»' central finite differences is a common, well known
NG
methodyfhe Method of Weighted Residuals was used as a third
oy method of solution. The main purpose of this thesis was to
N compare the accuracy and advantages and disadvantages of
<,
‘ the integral equation Green's Function method to the other
2y the 5uthor's
;& methods. A second purpose was to add to #y own knowledge on
3} how to solve differential equations. This effort also served
K '-‘\ .
% hts . HC‘
a to strengthen -my own abilitiés to write computer programs. -T
N | R . s
;EE heve tried to give enough details on my derivations and
R Fhese
:ih equations used in programing that others could use them in
“
solving their own problems with these methods. <« . —-
§£§ I would like to thank Dr Bernard Kaplan, my adviser,
}.; for his guidance and advice throughout my effort. This
thesis was sponsored by Nick Pagano, AFML/MLBM.
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4 ABSTRACT
T*-" N
§g§ Several methods of numerically solving differential
JF% equations in one and two dimensions were compared. The main
& method used was an integral equation solution using Green's
e
% E Functions which were turned into matrix equations by using
%34 the Trapezoid Rule. The method of finite differences was
| used to turn differential equations into matrix equations
e, 3]
;g which were solved using the Gaussian elimination method.
FA% Both a Laplacian Green's function and a Helmholtz Green's
:j function were used to solve the one dimensional problem by
§§§ turning it into integral equations. These integral cquations
%g were turned into matrix equations using the Trapezoid Rule.

‘3’ The finite difference method and the Laplacian Green's

- function method gave exactly the same results. The Helmholtz
Green's Function gave slightly better results. Two types of
the Method of Weighted Residuals were studied: the Galerkin
Method and the Collocation Method. Both of them gave much

better results than finite differences and the Green's

Function methods did. The Collocation Method gave better

et
N

f;. results than the Galerkin method.

%»% For the two dimensional problem an attempt was made to
of

— use Method of Weighted Residuals to reduce the partial

e l3 2

%;3 differential equation to an ordinary differential equation

3,
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which was then solved using the Green's Function method. :

o s

Two different sries were used. In both cases the results
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339 were very bad and did not get better with more points. The

method finite differences gave reasonably good results for
the partial differential equation. The method of separation
of variables was examined to see if it could be used to
reduce the partial differential equation to an ordinary
differential equation whch would then be solved by the
Green's Function Method. The analysis showed that this
approach would not work very easily.

The programs were run on an Apple III personal computer

and were written in UCSD PASCAL.
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%28 1. INTRODUCTION
At
ék 1.1 Background
§
%
:* Many of the real world problems of interest to
%5 engineers and physicists can be ekpressed in mathematical
§; form as differential equations or partial differential
)
equations. These equations relate differentials of functions
;% in time and space to each other, to other driving forces and
)
‘S to boundary or initial conditions. This thesis is only
? concerned with boundary condition type problems.
L4
b Boundary conditions can be classified into several
X types. Dirichlet boundary conditions specify the value of
Gi; the unknown function everywhere on some boundary. Neumann
f? boundary conditions specify the normal derivative (gradient)
?; everywhere on the boundary. Mixed boundary conditions
d
. contain Dirichlet boundary conditions on part of the
?3 boundary and Neumann boundary conditions on part of the
:% boundary. Cauchy boundary conditions specify both the
- function and its derivative everywhere on the boundary. Only
Sﬁ certain types of boundary conditions will lead to unique
‘ solutions for different differential equations (Ref 5:706).
T? Even when a unique solution can be shown to exist, finding
;ﬁ it may be very difficult analytically. For these problems
;;E numerical approximation techniques are necessary.
j . This thesis will use the following numerical methods to
B By
.- .
o 1
i
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solve differential equations:

(1) The method of central finite differences(CFD)

(2) Green's Functions

(3) The Method of Weighted Residuals

Also this thesis will use the Gauss Elimination method
to solve the matrix equations that arise and the Trapezoid

rule to numerically evaluate any integrals.

1.2 One-Dimensional Case

A simple ordinary differential equation of the
Helmholtz type was chosen. This permitted the use of two
different Green's Functions (Laplacian and Helmholtz), the
method‘of finite differences and two different weighted
residual methods (Galerkin and Collocation). The relative
accuracy of each of these methods will be compared. The
Green's Function approach relies on defining a special
function that incorpates the boundary conditions of the
problem and which permits changing the differential equation
into an integral equation which is sometimes easier to
solve. The method of differences replaces the derivatives
with differences between the values of the unknown function
at nearby points and then solves the resulting set of linear
equations. The Weighted Residual mecthods approximate the

unknown function by some series of functions with unknown

coefficients, substitutes it in the ecquation, and applies a




~ weighting factor, and then tries to solve the resulting

;' equations for the coefficients,
WY
et

o

- . .
bq 1.3 Two-Dimensional Problem

-

s

-

o A two dimensional heat conduction type problem was
S

XN chosen with a separable driving function and functional
"y
dependence on one boundary and zeroes on the other

_i; boundaries. The central finite difference method was used
4

-ﬁ again. Then attempts were made to reduce the partial

-

= differential equation to ordinary differential equations
:2 that could be solved by the Green's Function Method.

e

- @ 1.4 Purpose

A
5
5!

h One purpose of this thesis was to learn more about some
Y

i of the various numerical techniques used to solve

:Z differential equations, do numeical integration, and solve
<

g

e large sets of linear equations. Another was to compare

~

various methods to each other in hopes of learning if the

e Green's Function integral methca was any better to use than
;H the CFD method which is in common use. Hajdin and

T‘ Krajcinovic (Ref 1 and 2) contend that since numerical

i: integration formulas are more accurate than numerical

<.

e . . . .

N differntiation formulas, that methods like the Green's

= Function method should be more accurate and more useful in
4l . '.
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y complex problems.

1.5 Plan of Development

First the theory and formulas will be developed for the
various methods for the one-dimensional case. Next the
algorythyms and computer programs will be written and
tested. The programs will generate the data to compare the
various methods. The procedures developed here will be
needed for the two-dimensional problem. Then the theory and
formulas for the two-dimensional problem will be developed.
Finally the programs for the two-dimensional problem will be

written, tested, and used to generate data.

1.6 Equipment

The programs will be written in PASCAL and run on my

Apple III personel computer which has 128K bytes of memory.




O 2. THEORY

i\ Al
~ . .
{f: 2.1 Green's Functions
A
-‘}.1
E 3
Pa L
Green's Functions are a common tool that arise in many
\
b-ﬂ branches of physics. Discussions on their use and derivation
b1 r
é:u can be found in most math physics and electromagnetism
Thoy
textbooks (Ref 4-7). They are found in the solution of
LY

differential equations and integral equations.

.2
~oe

One way of deriving them is by making use of the Dirac

3
2
b I T

Delta function Sﬂa). The Dirac Delta function can be

o represented by the following limit:

_ sfngx
2% 5(2) = 3.:; —,Tﬁ,;’ (2.1.1)

Which has the following properties

7 S(x) = O f"%#o | (2.1.2)
~ S(,”)‘ o0 'E’V 2 =0 (2.1.3)

gq These equations lead to the following useful result:
) oo
R {7 8la-n')fle) e = £(2)) (2.1.4)
) -00
?

o This result will be used in the solution of the following

------------------
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equation by the method of Green's Functions:

a

»’: 3‘;},—_ = y(’ = - Flz,y) (2.1.5)

Boundary Conditions: y(0)= q ) y(/)= b (2.1.6)

’
;rﬂ The Green's Function G(x,x') is defined by the
3

following equations:

RN
o0
'il. da ‘
] N
"; C"('”"”)-: 6" = - §(e-2") (2.1.7)
X 2
A de
:"?. sy s ’ _G / l)_o .
,,% Boundary Conditions: G(O,d)— (,a = (2.1.8)
*‘\.
l” ‘:’ Multiply Eq 2.1.5 by G(x,x') and Eq 2.1.7 by y(x) and
b

o2 subtract Eq 2.1.7 from Eq 2.1.5 to get

WP,
i
7.t

2 n"

" -

o Gy'-y6 = ~Fl=))6 + y(x)sta-n’) (2.1.9)
1 J,’ .
W
.
.3& However

. / v "
1595 flgz [Gy"' )/GJ= Gy -yG (2.1.10)
Therefore

‘aé('/t [C’YI'YG'J':'F(“:Y)GO',«/) (2.1.11)
ty() §(x-2')

L
:-F l’::‘:f
v A

o e e gt Te JTw W v L, Tt Y et e o N
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. DARGAAY

e e e et ]
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f’? %ﬁ' Multiply by dx, integrate from x=0 to x=1, and rearrange

terms to get

%
{‘ ’ ) G‘ ! !
ylz)= [Gy'-y .]0 "’fo Flayy) 6lu,a) e (2.1.12)
I~ |
,} Sustitute the boundary conditions (Eq 2.1.6 and 2.1.8) to
o get

ylx') = aG'(0,2)- b &(l, =
3 t{ Flm,y) G(Aw,a/)o/'x (2.1-13)
¥
) Where
3 / V= o ’) (2.1.14)
R Gllw,a’)= 5L G2,

3
bRy
3; A more general result for three dimensions can be found
W) by making use of Green's Theorem:
L}

s

5VASJ(YV36-GV“)’)= éo‘q (yg—%— G%] (2.1.15)

LYy

Where n is the normal to the surface S.
4
2
D
N Y
Vay = - Flxsy)
(2.1.16)
P a - - -
% V3G = - §(2-a') (2.1.17)
.:-3 for X on the surface S 6(4,4') (@] (2.1.18)
DI
- ' 7
..l
W5
s
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Use Eq. 2.1.15 to 2.1.18 to get Eq 2.1.19 which is the three

dimensional equivalent of Eq 2.1.12.
Y(dl) - - &dq 8@(4'43 )’M)
+ jval ~ F(&, y) Gz, %)

(2.1.19)

2.2 Findinaicreen's Functions

The method of finding the Green's Function G(x,x') that

satisfies Eq 2.1.7 is fairly straightforward. Let

G, (i, 2') for <’
Glr,2') = { tt% v (2.2.1)

Ga (&,&’) 'Fav &z >4,’

These functions satisfy the following equations:

o:f_l‘-.-O for = <A (2.2.2)
G, / (2.2.3)
-a:-i_-oo {OY Z 7 A

Which have the general solutions of:

»

G, = A+ Bz Aor 2 &’ (2.2.4)
Ct D= $y 204 (2.2.5)

A,B,C, and D can be found by applying the following

conditions:




&a P " - - " 2. s A o ¥ P b Bl 4 AL S DA A i e, A, SV T I g }
2N |
N |
%

62 e ‘
X " G (0y2)) = Gall,2') =0 (2.2.6)

‘k;, G, (ay2')= Cala,=’) (2.2.7)

o o / _d ‘ - - (2.2.8)

":L a_% Gﬂ- (‘,4 )L=4' 2;6’ (4’4 )L._"l /

Eq 2.2.7 is true because we want the function G(x,x') to be

-:’;"‘

4 continuous over the entire interval x=0 to x=1. Eq 2.2.8

o

™

25' comes from integrating Eq 2.1.7 once over x. Eq 2.2.8 shows

that the derivative of G(x,x') is discontinuous at x=x'.

;;@ Substitute the boundary conditions Eq 2.2.6 into Eq 2.2.4
égﬁ and Eq 2.2.5 to get:
?29,~
A= O C+D=0 (2.2.9)
7 9 Use Eq 2.2.7 in Eq 2.2.4 and Eq 2.2.5 to get:
el
T / -
X Ba'z2 C+Da' or 2 (B-D)=C (2.2.10)
3
Al .
f} Substitute Eq 2.2.4 and Eq 2.2.5 into Eq 2.2.8 to get:
!
Lo
ES,
D-6=) (2.2.11)
K
g
‘si Eq 2.2.9,2.2.10, and 2.2.11 have the solution:
oy
W I} 4 /
2}-3 Cz=a o, D=-2 , B= [ =2 (2.2.12)
Lt
%
i Which yields the following Green's Function solution to Eq
3 9
\»4
1
2 e
"l.!"v,l'x, \‘l\, 4, ’.l‘t K'a‘\'nt - i, n'. . y 0'- W3, ‘ \. ) "'.;.4'..|' y 'ﬁl‘ --"." --'._f 0 .-Q‘:..- .--'.-"..".'{ "’.;';"'.."::!':.{:1’:{:(']
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;R G(ﬁ,w'>={“(,_“) for =< 2

2 (1-x) fov »>2" (2:2:13)

B eyt
X »ot
Eq 2.2.13 will be referred to in the rest of thesis as the
S
%;, Laplacian Green's Function since it is the solution of the
R
;S? one dimensional Laplacian Equation Eq 2.1.7.
e

Another Green's Function that will be useful is the

solution to the Helmholtz Equation:

Vg

wj ‘ff;;

< 34 MO T
o,
w

") a

iw o G; r<56444¢9 =-‘86z,dp‘) (2.2.14)
LW A

&

%g% With the same homogenous boundary conditions Eq 2.2.6. This

‘;’ equation has the general solutions of:

SN
G, = Asinz  rBcosa fy <’ (2.2.15)
S0% : . ,

. G,= Csinm + Decoso fov 2>z (2.2.16)
‘.l
93¢
. % Substitute Eq 2.2.6 in Eq 2.2.15 and Eq 2.2.16 to get:
G
i)‘::*. A0 +B-)=0 =5 pB=0 (2.2.17)
b Csinl + Dcos! =0 % D=~-Ctan| (2.2.18)
4
s
i_-:- Substitute Eq 2.2.15 and Eq 2.2.16 into Eq 2.2.7 and Eq2.2.8
=) to get:
o 10

%
Gt
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Do
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L o

DAL ANR AT

A=Cfl-ca'fa""°"’J (2.2.19)
C [COs,,.,’-r sina’ tan I]- Acosg’-.-.-/ (2.2.20)

Eq 2.2.18, 2.2.19, and 2.2.20 can be solved to give:

‘ /
N ! _ 5|n,¢' < x
6(4;,&')—_-{5'”"‘(“’5"‘ r....,]fw (2.2.21)

o ‘
e [eosa- Sina ] fer 2>2"
tan |

Eq 2.2.21 will be referred to in the rest of this thesis as
the Helmholtz Green's Function.

A useful property and check on the solution is that
most Green's Functions are symmetric, i.c. G(x,x')=G(x',x),
when the differential equations and boundary conditions are

adjoint (Ref 5:873-874).

2.3 Method of Weighted Residuals

A second method of solving differential equations is
the Method of Weighted Residuals. Consider the following

differential equation where L is a differential operator:

L)/(z,u)-r F(x) = O (2.3.1)

Expand y over some set of basis functions qy‘abto get:

N
Y'V("“) =2 Gl (2.3.2)

Azl

11




Define the residual R(x) by:

N
Rlz)=z Lyyt Fla)= L(élc‘-%(a))fpu) (2.3.3)

setof
Letv%ta)be someAweighting function,. Then use the folowing

set of equations to solve for Q;

I »
W R =0  hyj=fa oV (2230

3

This is the general form of the Method of Weighted
Residuals., There are various names given to different
choices of weighting functions VVJ(,,,) :

Collocation Method: ij/4¢)’ S(“"/{j) (2.3.5)

Galerkin Method W5 (a)= C?J(/,y) (2.3.6)

2.4 Method of Finite Differences

A third method to solve differential equations is the
Method of Finite Differences. This method approximates
derivatives with differences between values at nearby nodal
points. To get these aprroximations we make use of the

Taylor series to expand y(x) at the points x-h, x+h, and

12




b Jhs T he* S SR R A LA AT R TN N, |

R x+2h:
- - / _hf y _ho 7

L Y(""'h)' )"('4‘) hy(':)f Faid (2) 4 h)(z.a.l)
r N '%7 lela) -72‘0 yz(ﬁ_) + O(h®)

_&' y (m+h)= yl) + hy'ta) 4 lf;y”/,,) +.h_’y”/(,,) (2.4.2)
o + A 4 ns e

» 24 Y @+ 52, y¥ia) + 0(p®)

3 y(esan) = y(ads ahy'tad + au*yla) s 4 hoyMa) (2:4.3)

Y 5 6
+ 0y Ty 1 2 W (a) + 0(n®
Where O(h‘) refers to terms containing sixth and higher

ﬁj order powers of h., Now subtract Eq 2.4.1 from Eq 2.4.2,
'u’

subtract Eq 2.4.2 from Eq 2.4.3, and add Eq 2.4.1 to Egq

O

YA e 7

2.4,2 to get the following equations:

ot e s

-7

© y(,pfh)-y(a-hh Zhy’(a)-r—";y"'-r O(h®) (2.4.4)

% y(atam)-ylorh) = hyl(x)t 7 Wyle) €O(n%) (2.6.3)

ylath)+yla-n)= Ry(a) 4 b2y (e 4 35 By (-4
+ 0(h%)

RE>, These equations can be solved for y'(x) and y''(x) to get:

P / y(mth)-yla-p) 2, \
Y(ﬁl)‘ v a.hﬁ 'G'Yh)fo(hqj (2.4.7)
& / = Yy(=tah)- y(ath) / 2.4.8
X yla) = L ™ 220 2 hy'ta)+ O(n®) )
k- " - a (2.4.9)
X (x) = Ylomh)tyl(#-h) -2yl b I WY
fad Y o T y V) + O (h)
x The method of finite differences takes h to bc some small
(W]
e
3{ numder and neglects the second terms in these equations to
Py
ff get the following equations:
(Y "\
-.$- A
N 13 |
N
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2
VLI
"'f‘_t, Ny e
b h)~- y(x=~h)

y’{,,,)?—.“ 7‘“"31 y(: (2.4.10)
BT
259 -y (#xth)
3: y'ta) & y'[_ffil:\) y( (2.4.11)
a5 -h) - 2.4.12
ﬁ y"/a) o y-(-?-fh)-thya[d h) =&y () ( )
w2
;:& Eq 2.4.10 is known as the central finite difference (CFD)
Y
{§§ approximation for y'(x). It has an associated error ot oruaer

h&. Eq 2.4.11 is known as the forward finite difference

(FFD) approximation for y'(x). It has an associated error of

order h. Therefore, using the CFD method with symmetric

;g o
SASARKAL,
";’ A

points around x should give more accurate results than the

=~

*, A A
HEPARLS

FFD method. Eq 2.4.12 is the CFD approximation to y''(x). It

has an associated error of order hz.

W
NG 2.5 Integration Methods
&
‘ii When the Green's Function Method and the Method of
i: Weighted Residuals are used to solved differential
ﬁ; equations, integrals will need to be evaluated numerically.
— There are many methods of numerically calculating integrals.
5}3 Generally they work by taking the values of the integrand
Eﬁ f(x) at n+l points, finding a polynomial of nth order that
= fits these n+l points and then calculating the area under
ig this polynomial. This procedure is repeated for small
zﬁ intervals until the range of integration is covered.

4
SR
o8 t
s




NN . Trapezoid Rule
L -
The Trapezoid Rule is the simplest method of doing
»§E numerical integration and is the method which will be used
Y
’ in this thesis. It uses first order polynomials (i.e.
;"w straight lines) to connect points on the curve y=f(x). These
)
oo lines form trapezoids whose areas are easily calculated. The
L4
§ area under a typical trapezoid with a base length of kL and
"
>‘. sides of f(x';_l )} and f(x" ) is:
& .
“'.
Area= -l;: [-F(ﬁ,;-,)*‘f%'):[ (2.5.1)
£
q
& 1
0“;
s y=fle =T
" e
% /
i £lm:)) £(as)
X je——h ‘
iy -1 o
s
\: Figue 1. Trapezoid Area
0t
; ; So the combined total area of all trapezoids, over the
vq-.
N interval go* @ toyysbpis:
=
. Total Avea = ";'; [‘F(‘n)*f("’rﬂ" %G(’*’A)*'f""’)}(z_iz)
o h
23 oot wlflan )t ‘F(’*'M)]
A
oy Therefore, the total area under the Trapezoid Rule is
o 3
i) £§\‘ .
. 15
$:
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'1_1111&2

jb‘flﬁ)o‘ar f:—[f'(a,)'r 2f(2)t - + 2f (xp-1)
a (2.5.3)
T'F(;&M).]

This approximation has an associated error of order h3

Simpson's Rule

The next simplest method of numerical integration is
Simpson's Rule which uses polynomials of order 2 (i.e.
parabolas) to fit f(x). It can omly be used the number of
intervals used to divide x=a to x=b is even. The resulting

equation is (Ref 6:350-351):

(5% (ayota = 1 (L) 45 mm)+ 25 0a )1 ¥ 5l
a .f..-+zf(-,,_‘)*q{'(w_,)ff(‘”)j (2.5.4)

This approximation has an associated error of order hs . An
earlier thesis (Ref 3:26-30) found that the trapezoid rule
gave more accurate results than Simpson's Rule for problems
involving linear Green's functions. This is because at the
point x=x' a parabola includes more incorrect area than
trapezoids do for a linear Green's Function. Therefore,
because it is simpler, can be used for any number of nodal
points (Simpson's Rule requires even number of points), and
because it gives better results for the Laplacian Green's
Function this thesis will use the Trapezoid Rule when doing

numerical integration.
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‘ N y=§lx)

$lai) |Flm)
{(‘ij I)

g - N 2Agy|

N Figure 2. Parabloid Area

& 2.6 Converting Integral Equations to Matrix Equations

In sections 2.1,2.4, and 2.5 we have discussed various
._: methods of solving differential equations. It will simplify
" .
‘{: notation and make it easier to see the methods of solution
\

‘:} by adopting matrix notation and methods., Consider the

s
‘l.lr. ‘A.

following equation:

S e
Je S

)’(«): Flz)+ L,G(A’-,//v')'f(/g’)da./ (2.6.1)

Use the Trapezoid Rule Eq 2.5.3 to replace the definite

N
XN -

integral:

y() = Fla) + :5, D; Glawi ;) £ (%)) (2.6.2)

D‘=DN=% Da>0s= -+ =Dy = h (2.6.3)
- let  y(2i)z yi3 Fla):F 5 6(=,%)2 G (2.6.4)
o2 £ (22 $4

. Use these results and definitions to write the following

i

A
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s . .
AN matrix equation:

4
",
?
o I
3
o

*

;.u YD F, G"{' Gli{& . GIN-FN
‘-: 4 - [} ' ] (2.6.5)
& I A ; .
23 . . '
't YH
Fv Guiy **° Guy i
-
ié In more compact form Eq 2.6.6 can be written as:
W]
& ‘)7 =F + GfF) D (2.6.6)
+
»
™

Another equation that will be needed is the following
integral equation:
/ ’ / /
a Y®) = Fla) t § 6(x,2")yla")cla

(2.6.7)

¢ Using the Trapezoid Rule Eq 2.6.7 can be written as:

yi= Fi + é/’ Gi; 05 Vi (2.6.8)

IR,

E

Or in matrix form as:

P PP
v -.’l. \.'A.’k a

y=F+6D7

(2.6.9)

Where: C‘:-; = Gu ' - G/N

Gy - 6
Vi NN (2.6.10)

P
L
g

‘0
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N
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S
o
[N
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. (2.6.11)
On
Eq 2.6.9 can be rewritten as:
T-80]5-=F
{I ])’ F (2.6.12)

2.7 Converting CFD Into Matrix Equations

In section 2.4 the formulas for central finite
differences were developed. In this section they will be
used to turn the following differential equation into a

matrix equation:
a .
"_'lei’%‘_)-rgfd)y(/z)"fu) (2.7.1)

Sustitute Eq 2.4.12 into Eq 2.7.1 to get:

y(/xfh) r y(a'h)~2}/lﬁ)
- Fy

- t i) yta) = £(x) (2.7.2)

Make the following notation changes:

T
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o Yz y: 5 §ladz g 5 fla)= 4

(2.7.3)

The resulting géneral equation is:

Yier )it * yi(gi=a)= h'f; (2.7.4)

for i223,3,°-, M-I

Let the boundary conditions on y(x) be:

y,:ﬁ and YNsD

(2.7.5)

Eq 2.7.4 and Eq 2.7.5 generate the following set of linear

equations:

Y = A
g Y1 t (ﬂ;’a')Ya TY3 = ha{a‘
Ya + (9s-2)ys T V4 = hif,
. . : (2.7.6)

Yv-a t (Gn-1=RYw-1 T = h®fn-
yw =25

Eq 2.7.6 can be written in either of the following matrix

forms:

20




.....................

X
(]

S

L)
LACAY

A

A fy
ot
a
U
L

o6 0o - (Y!\

Ya
[ (g1 © O - -~
o ;(35'3)1 0 - 4 W4, (2.7.7)

'

".l e .

,;-E: ‘: | (3“{./-"1) ! \YN-I/ ha +/V’/

™ o o | v

b} (@a-3) | 000 - - /Ya\ hia-A
I cg,-a;) |.a)olg o Y3 hA s (2.7.8)
o 1 loy3 4| = wtdy

. ’

' ) 2
) I (gw-i ) \ y,v_,/ :’:N-J.B
-': M-

o A ? - B (2.7.9)
®

i 2.8 Matrix Inversion

In sections 2.6 and 2.7 the following form of matrix

,ﬁx equation has arisen (Eq 2.6.12 and Eq 2.7.9):
Ax =256 | (2.8.1)

+ ] -, . . . -

A Where A is the coefficient matrix, x is the unknown column
Iy - :

matrix, and B is constant column matrix. The problem is to

determine x.

000 |28

| 25X

The most commonly employed method is the Gauss

/,

elimination method (Ref 4:1-4). This method makes use of the

o/ .
:s 21
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fact that the following algeraic manipulations performed on
a set of linear equations leaves their solution unchanged:
(1) Multiplication or division of any equation
(row) by a constant
(2) Adding or subtracting one equation(row) to
another equation(row).

Consider as an example the following set of four equations:

Av Ap Ay Am\ [ 2 J

Aa) Ana Aay Apy || 25 -~ | Ba (2.8.2)
M) Ava Asy Asy | |2 B, o
Ayt Aya, Ayy Agy| \ 224 By

The Gauss elimination method is simply a sequential
application of row operations (1) and (2) above. The goal is
to reduce all elements below the diagonal elements to zero.
First §ubtract AM/A" times the first row from the second.
row, subtract Ay /A, times the first row from the third row,
and subtract A“V%" times the first row from the fourth row.
This produces Eﬁ 2.8.3 where all the elements in the first

column are zero except for the first element:

An A A Ay\ [2 By

O Ara Any Apy |[2a| _ | B
’ ‘ '
O Aua Ayy Ayy Ay By
22




3
3
=

Next start with the second row and follow the same steps to
reduce the third and fourth elements of the second column to
zero. Finally, use the third row to reduce the fourth

element of the third column to zero:

A A Ap Ay 2 6,
0 A&a' Axs Ail‘/ 2, Bal

—-—
-

O 0 Ay Millas| |p)] (2.8.4)
0 0 0 Aw? oy 5:’

Eq 2.8.4 can now be used to find the solution matrix by

simple substitution:

/ '
AQ:'a‘I = D"” % %42 b‘/ /Al/‘I

(2.8.5)
. l- /4

vy 2y + A,ia,,= By D 2y= rﬁ-ﬁ—"—’,—,!—”—"l (2.8.6)
3

2.8.7

a5y = ( By~ Aadzy = Pas 2n)/ Ayl (2.8.7)

(2.8.8)

2y = (B - AwAa=Agmy~Aa 2.)/Ay

During these operations the key elements are the diagonal
elements which are known as the pivot elements. The method
does not work if a pivot element is/becomes zero. Also if
the pivot element is small compared to the other elements
below it it will led to round-off errors. The solution is to
switch rows around to put the largest element in the column

at or below the diagonal in the diagonal position. This

23
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-
Sy comparison is done when the method is done with the the
previous column.
Another thing to note is the types of matrices to be
solved are different. The Green's Function method and the
Method of Weighted Residuals generate 'dense' matrices where
o
.{: most of the elements are nonzero. The central finite
o
3 difference method on the other hand generates a tridiagonal
{ B3
matrix where only the diagonal elements and the elements to
2 each side are nonzero. The solution of the tridiagonal
\
ﬁs matrix is much simpler because of the fewer number of
L )
operations needed (of order N versus order NJ) and computer
\ \1
») memory storage requirements can be reduced drastically from
<
:} N*N to 3N. Also because of the fewer number of operations
6‘3 needed to solve a tridiagonal matrix, the accumlated
8 -
r: round-off errors will be much smaller.
w
5
o
.
‘. ;
53
.
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A
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3. ONE DIMENSIONAL PROBLEM

3.1 Computer Proprams

The computer programs used to solve a one dimensional
problem for the various methods used were all very similiar,

The flow diagrams appears in Figure 3. i

Read N: number of data points
Read YO,Yl: boundary conditions

Generate array of nodal points
Generate Green's array
Generate numerical integ. coef. array

Generate the coef. array and the constant
array using matrix operations

m Use Gauss Elimination method
AR procedure to solve the matrix eq. !
|

: \
Generate exact solution array J
and compare to get error array

Print out solution array and error array

Fig. 3 Flow Diagram for Computer Programs |

All that needed to be changed for each method used were
the procedures that generated the matrices needed and the
appropiate products of matrices.

3.2 Problem

AN The following one dimensional differential equation
l..'.

25
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will be solved by the Green's Function method using both
Laplacian and Helmholtz Green's Functions, the method of
central finite differences (CFD), and by the Method of

Weighted Residuals (MWR) using collocation and Galerkin:

daz//z):_ )!”{a) - _7{4,) + X (3.2.1)

dx*

Boundary Conditions: y(b): y(/) =0 (3.2.2)

This equation was chosen beause it is the simplest second
order differential equation whose Laplacian Green's
Function solution gives a integral equation and also has a
simple Helmholtz Green's Function solution. It will also
show the essential features of CFD and MWR methnods.

The solution to Eq 3.2.1 is relatively easy. It is to
see that the particular solution yP(x) = x satisfies the
inhomogeneous Eq 3.2.1 This leaves the solution of the

following homogenous equation to be found:
) -
y T)"O (3.2.3)

Eq 3.2.3 can be solved by assuming that y(x) is a linear
combination of exponentials. Substitute the following

equation (Eq 3.2.4) in Eq 3.2.3 to get Eq 3.2.5:

y(»za)=<:p4z

(3.2.4)
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(p%+1)e =0 (3.2.5)

A Divide by the exponential to get:

oy 2 = = =I ‘
:i 0’y =0 = D A (3.2.6)

Therefore the homogenous solution is:
1 4 ol U .
yn(a)= ATy be“®. Acose tBsina (3.2.7)

:% Therefore the general solution is:

‘ PaN y(/)‘):)’pf)’h; & 4+ Koosn + Bsina (3.2.8)

ti Apply the boundary conditions Eq 3.2.2 to gel:

2 y(0)=0=0+ Al +B:0
e y(l)=()= ]+ A cosl +B sinl

(3.2.9)
(3.2.10)

)
PR

Which have the solution:

4

XXX
AR

>

‘,

Az0 ard B= ’Z:luTl

(3.2.11)

RS “l
. « d
»

N

*
- >
‘l Ao b

a s

Which gives the general solution as:

¢4 + o
J‘.“'-» , AN
L)

<y

vels
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' n L
AR (2) = x 2.
; % 7 ) sin | (3.2.12)
a3
N

.'\
—ﬁ}} 3.3 Green's Function Integral Equations
9
:z& We know from section 2.1 and Eq 2.1.5 and Eq 2.1.12
AN

> that the Eq 3.2.1 can be put in the following form:

N
2 (2') = EG /- YG/J, 3.3.1
AR y Y o (3.3.1)
b

- = I /7 |
o + 50 (y-x]6 (z,2)dx
i~

{% Use the boundary conditions:

&

- Y(o) =2 y(0) = G(0,4')= G(I, 2')=0

(3.3.2)

§~{ to simplify Eq 3.3.1 to the following form:

4 (4) = jgl (y-x) Gla,2)dx

(3.3.3)

The Laplacian Green's Function is (from Eq 2.2.13):

(-2 for 242!

3.3.4
#(1-) oy a2’ OO

"oy G, (my2') = {

Eq 3.3.3 can be turned intc the following matrix equation

(see section 2.6):

.‘:..‘
3 - .i
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2 Y

';/‘ - D ’>',‘ - D x (3.3.5)
ot Let -ﬁ = - ,_7 (3.3.6)

Eq 3.3.5 can be put in the following form using matrix

methods:
2y (T- LD)y=D0 (3.3.7)

Eq 3.3.7 has the form of:

>l
o)

-
X 7 -
ol

e (3.3.8)
K = - ==

o Where A=TI-6.D (3.3.9)

3

1

e )

Eq 3.3.8 can be solved using Gaussian elimination

434 (see section 2.8) to get the Laplacian Green's Function
*
o solution to y(x).

Another method of solving Eq 3.2.1 is to usc the

Helmholtz Green's Function. The Helmholtz Equation is:

/ -
Y,‘f Y = x (3.3.10)

A

CPPET
o ] -“J‘}J e ]

The Helmholtz Green's Function is (Eq 2.2.21):

I

2z |
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, Sin . —5"“ fov x<a’
GH(/"’)‘“’):{. [cos2 Sl J

/ ) (3.3.11)
5na' [ cosp - 5?;'_4;] fov >
an

The equivalent of Eq 3.3.3 is the following equation:

/
yl(x) = - L4’6# (g D e

(3.3.12)

Which has the matrix form of (using the Trapezoid Rule):

s - -Z%2
y (3.3.13)

Eq 3.3.13 can be solved easily by matrix multiplications

without having to use Gaussian elimination.

3.4 Central Finite Difference Solution

The next method used to solve Eq 3.2.1 is the method
of central finite differences (CFD) (see sections 2.4 and

2.7). Use Eq 2.4.12 to get:

U i i =AY/ .
y'= Y TV T8 o —yit X

h; (3.4.1)

This equation simplifies to the following set of linear

equations:

Yiog t (W3-2)yi tym = 4 h*x

(3.4.2)
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With the boundary condition equations:

y, = VVV = C)

, e
LINIR RN

(3.4.3)

e e

s/

Eq 3.4.2 and Eq 3.4.3 can be turned into the following

M matrix equation and definitions:

1y 3

A‘ ;; = E | (3.4.4)

< (3.4.5)

2 7= Cyyv] e
B = (x - x)] o

Eq 3.4.4 can be solved by the Gauss elimination method to

get the solution for y(x) at the nodal points.

3.5 Method of Weiphted Residuals Solution

CRR
v

LR I

L]
N ‘,". ‘Y

e
»

Eq 3.2.1 can also Le solved using the Mcthod of

o) - LRRRRE
ply
L
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Weighted Residuals (see section 2.3). Chose a set of basis
functions which satisfy the boundary conditions
y(0)=y(1)=0:
“
d;(a) = 2 (I-=)

(3.5.1)

Substitute Eq 3.5.1 into Eq 2.3.2 to get an approximation

to y(x):
3 I(I-m)
Ym(2)= 2. Qjx & - (3.5.2)

The residual is:

RM(A’J) = )’mlh} Ywm -~ x (3.5.3)
Rm(2) = Z'_"ajfj(,}fi),z‘j'&'[;(Jﬂ)@‘j"] (3.5.4)
P,f f qsa"’(l-w) -z

R ¢ a—'f 1) (3.5.5)
2) = - a;[ 21 -=
~ “1’.}-: “[tJ¢J’*{J-;-4(d+')}J

Galerkin Method

For the Galerkin Method we use the functions in Eq
3.5.1 as the weighting functions and integrate from x=0 to

x=1 and set the Residual equal to zero to get:

- —w T eTR TR T ® T T T W ¢ W
AR T TR T TS I TR F e T e Tt T T LY T

o %e




‘1
L
::-': . [
Ly [ -
..‘{,5 S J Rm (4;) &‘(4,) = O (3.5.6)
) [/
~\~ .
ﬂx Substitute Eq 3.5.5 to get:
9 o o
“ . d(/-
o ""jd”‘ z (lw){"’"” ’“JZ__,QJC"”. :' %) (3.5.7)
-5 ° #5270t = (je0Y]
?? Simplify Eq 3.5.7 to get:
V I itl
o :5:!46%4 :—¢>+2 % "“("“)f¢ (1-2 (3.5.8)
¢ jei A -y ]
=
‘ Use the following result (Eq 3.5.9) to simplify Eq 3.5.8
‘: and get Eq 3.5.10:
{3‘:' - 191
ol , " _ [‘ &M-' - ’L.
- - .5,
B @ 5a a d# mt+l Jg m+ | (3.5.9)
o
o (i-0) ;% glgent!
= T+ [—J/- —.—9— = 3.5.10
’.j: 0= .H) .A#l Z it it) itg1/ ( 10)
1 Lol g 1- T"lf_;Ts
tyt 'ty
yl. ‘'Eq 3.5.10 can be turned into the following matrix
equation and definitions:
T-T -—
o Aa= B (3.5.11)
i\.
o A = 360 _ a‘,"+ JO+ & 1
. N7 Tyl Ty eyt iR itgdd (3.5.12)
i B, = L _ 1 (3.5.13)
% At 447
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o AN here g is the column matrix of 4. . Eq 3.5.11 can be
[ solved using ithe Gauss elimination method.
T
F .
KD Collocation Method
'h*'\.
:ﬁ; The collocation method uses a set of displaced Dirac
2
:’i Delta functions as the weighting functions in Eq 3.5.6:
/ .
T s R () § (m-ppj)dla = O i=lyd,0 e (3.5.14)
'\'1’ 0 . .
o
" Substitute Eq 3.5.5 into Eq 3.5.14 to get:
%
'{::3 Zm J( J-R
=epit 2 420 (-0) 4§22 70 e (o V](30515
o 0 ' J=! v ' #i) + % g/ ”‘i(.)")} ( )
N o
Ny Eq 3.5.15 can be put into the form of Eq 3.5.11 with the
~
.
Q8
= following definitions:
AN

oy i : .6'1[- .

R

2 ' ) (3.5.17)
2 6| = t+ 5.,

f:ﬁ Eq 3.5.11 can again be solved by the Gauss Elimination
?}3 method to get coef Q.

[3~."

r&: To get y(x) for both Galerkin and Collocation methods
QI8

,sfl substitute the solutions into Eq 3.5.2 and the values of
1A

I the nodal points in x:
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- ™M J

- yn.(mi)-:Z a; *i (1-».) (3.5.18)

< J;l .
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o

e 3.6 Numerical Results and Comparisons

3

B¢l This section will present the numerical results and

N

ﬁg errors of the Laplacian Green's Function, Helmholtz
Green's Function, central finite difference (CFD),

i

2 Galerkin, and Collocation methods.

)

¢31 First, Table 1 shows results from the CFD method, the
Laplacian and Helmholtz Green's Function methods and the

o

‘Sz exact value of y(x). Results are shown for one, three and

% .

}: five interior nodal points. Second, Table 2 shows the

»

G!} relative percentage errors of the results in Table !.

i)

o Table 1. CFD, Laplacian, and Helmholtz Results for

.ﬂ Different N and at Several Points

&
N X Y CFD Y LAP Y HELM Y EXACT

N

:* 1 0.5000 -0.07412857 -0.07142857 -0.06828782 -0.06974697

\

o 3 0.2500 -0.04427401 -0.04427401 -0.04378418 -0.04401368

0.5000 -0.07015590 -0.07015590 -0.,06938332 -0.06974697

e 0.7500 -0.06040304 -0.06040305 -0.05974305 -0.06005621

-}:

s 5 0.1667 -0.03056336 -0.03056336 -0.03041289 -0.03048348

S 0.3333 -0.05564811 -0.05564810 -0.05537471 -0.05550328

By 0.5000 -0.06992782 -0.06992781 -0.06958544 -0.06974697

: 0.6667 -0.06837619 -0.06837618 -0.068C4304 -0.06820101

~ 0.8333 -0.04640671 -0.04640670 -0.04618201 -0.04628921

e

o

N |

% ‘
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» ot Table 2. Relative Percentage Errors of CFD,
: Laplacian, and Helmholtz Methods for
Different N and at Several Points
)
q
ﬁ N X Y CFD Y LAP Y HELM
L]
1 0.50C0 2.411 2.411 -2.,092
. 3 0.2500 0.591  0.591  -0.521
e 0.5000 0.586 0.586 -0.521
2 0.7500 0.577 0.577 -0.521
5 0.1667 0.262 0.262 -0.232
: 0.3333 0.261 0.261 -0.231
Y 0.5000 0.259 0.259 -0.232
; 0.6667 0.257 0.257 -0.232
1 0.8333  0.254 0.254 -0.232
g Table 3. Relative Percentage Error Trends at X=.5
a for Different N for CFD, Laplacian, and
;5 Helmholtz Methods
]
EN
" (¥ N H Y CFD T LAP Y HELM
3 1 0.50000 2.41101 2.41101 -2.09206
': 3 0.25000 0.58629 0.58630 -0.52138
5 0.16666 0.25929 0.25928 -0.23159
9 0.10000 0.09313 0.93086 -0.08335
p 19 0.05000 0.02343 0.02313 -0.02094
" 29 0.03333 0.01052 0.01039 -0.00930
"y
% Table 3 shows the relative errors at x=0.5 as the number
N of nodal points (N) increases and the step size (H)
3
. decreases. It can be seen that the size of the errors
‘j decreases for smaller steps as would be expected. The most
.. unexpected result in Tables 1,2, and 3 is that the CID
-: method and the Laplacian Green's Function method give
~d exactly the same results (differences in the last decimal
- e place are due to different accumulated round-off ecrror). A
\‘-_.-
- 36
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similiar result was gotten in a previous thesis (Ref

3:62-65). The Helmholtz Green's Function method gave

slightly better results in all cases than the CFD and

Laplacian Green's Function,

Table 4. Laplacian, Galerkin, and Collocation Results
for Different N and at Several Points
N X Y LAP Y GAL Y COLLOC Y EXACT
3 0.2500 -0.04427401 .04403237 .04396500 .04401368
0.5000 -0.07015590 .06974640 .06974170 .06974697
0.7590 -0.06040304 .06003848 .06009403 . 06005621
5 0.1667 -0.03056336 .03048322 .03048368 .03048348
0.3333 -0.05564811 .05550319 .05550334 .05550328
0.5000 -0.06992782 .06974734 .06974698 .06974697
0.6667 -0.06820101 .06820088 .06820092 .06820101
0.8333 -0.04640671 .04628902 .04628904 .04628921
Table 5. Relative Percentage Errors of Lapacian,
Galerkin, and Collocation Methods for
Different N and at Several Points
N X Y LAP Y GAL Y COL
3 0.2500 0.59147 .04247 -0.11058
0.5000 0.58630 .00081 -0.00756
0.7500 0.57751 .02952 0.62973
5 0.1667 0.26204 .00087 0.00025
0.3333 0.26095 .00015 0.00011
0.5000 0.25929 .00053 0.00001
0.6667 0.25687 .00019 -0.00013
0.8333 0.25385 .00041 -0.00036
37
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Cf: Table 6. Relative Percentage Error Trends at
x=0.5 for Different N for Laplacian,
Galerkin, and Collocation

~J l'l
=
=

Y LAP Y GAL Y COLLOC

- v s me el

b

N 3 0.25000 0.58629 -0.00081 -0.00756

o 5 0.16666  0.25929  0.00053  0.00001

: 9 0.10000 0.09313 0.00037 -0.00001

A 19 0.05000 0.02342 -0.00064 -0.00003

30N 29 0.03333 0.01052 0.00004 0.00002
gﬂ From Table 5 it can be seen that the Galerkin and

g; Collocation methods are much more accurate then the

i Laplacian Green's Function Method (and CFD method).
5? However, the size of the error varies by a large amount at
{E various nodal points., From Table 6 it can be seen that

- Q there is nothing to be gained by going to large numbers of
fif . nodal points since the size of the error stopped

_ig decreasing at N=9 for the Galerkin method and at N=5 for
’ ; the Collocation method. One potential problem with using '
E% the Galerkin method in more complicated probims is that
~;{ doing the integral in Eq 3.5.6 will be more difficult. In
- fact, numerical integration maybe necessary to evaluate [q
ta 3.5.6 and this will decrease the accuracy of the final

E; results. On the other hand, the Collocation mcthod does

Ta not suffer from this problem of evaluating Eq 3.5.6 since
zsa it uses Eq 3.5.14 instead which is always easy to

;% integrate because of the Dirac Delta function.
Y.
?.‘ e

o
.
8
A Y
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4, TWO DIMENSIONAL DIFFERENTIAL EQUATION

4.1 Problem

The following form of equation often arises in heat

conduction problems and in electromagnetism:

aT . T = 0
VAT ¢ K°T = T ay“rk T (4.1.1)

If k*k takes the following form the above equation can be

separated:

kK*= 9%+ f () + 9(0)

(4.1.2)
Let T(a,y) = X ()Y (y) (4.1.3)

Susitute Eq 4.1.2 and Eq 4.1.3 into Eq 4.1.1 to get:

7,7:3;1— [*+f()]Xn) = O )
A
é’%x"* [“a"ba-rgCy)j Yiy) =0 (4.1.5)

To get a problem that would result in an integral equation

let us start with a T(x,y) and find out what k*k is:

Tlwsy)= awy cos I sin g

H [
%"_ = 7k cos’% ['(‘g)ay th’—rg +7T$M%J

(4.1.6)

(4.1.7)
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Therefore:

R

J _-%aT-F)’S"“Z'{s;"
7 %ﬂycosl’f co

TR

2% (4.1.9)
3

Use Eq 4.1.10 and Eq 4.1.11 to simplify Eq 4.1.9 into Egq

4ot.12:
T g, = ED 4, Tz
y 4 % Stn = £— Tan
4 > > > > (4.1.10)
T n
rr4.ccs'£foa5!-§ = '7‘“"’3} (4.1.11)
* Nar
. u (%_ t L ran 32 -;’/fca‘flaX]T
x> Y (4.1.12)

o

Eq 4.1.12 is the two dimensioal differential equation which
will be used to try out the methods of solving it. The

boundary conditions are:

T(0,y)= Tllsy) = T(x,00 =0 (4.1.13)

- nx (4.1.14)
T(x,))= 2 cos —

The exact solution to Eq 4.1.12 is Eq 4.1.6. Eq 4.1.12 can

be put inthe following more compact form:

3/'[ ’7 1- F(X,y)T(X y) [, (4.1.15)

” . .
F(X,Y)— I‘rqn ‘76‘1{ (4.1.16)
40
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4.2 Central Finite Difference Solution

Figure 3 illustrates the grid of points spaced h apart

IS
L

in x and y which will be used in the method of Central

iy
g e .

Finite Differences to solve Eq 4.1.15.

.{.‘l- s

TSRy aa

N Vv e

ql; I & 3 4 5

Figure 3. Two Dimensional Grid of Points

’c&’b” 'l'f '

Jl'.

-

Recalling Eq 2.4.12 we can write the following

J‘J‘.} -5

equations:

i

2T = Tz-1,9 + Tae1g - 219
PN S e (4.2.1)
,J-"PTJJ—I - ‘RTIJL (4.2.2)

i

L8
9&
Mk
!
o

<I R4
o %
ek

Where ‘TIJE T(“zsya) (4.2.3)
Fia - F:6“3>‘YJ) (4.2.4)

’\ 'f- ";{J
-
(1]
(s

AAA

122

”5& f’
<

Subsitute to get:

oyt
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T35t Tragd + Tr g1 + Trget ~ 4T3
ha

tFPaTy20 (4.2.5)

he)

- $I -’

v Multiply by h*h to get:

TI-:,J *Thl,J *Trgq+ TI,JU t (hanJ"")TI,J =0 (4.2.6)

Eq 4.2.6 upon careful examination can be converted into the

following matrix equation:

(WF,-4) | 0 | 0 0o 0O © (TRA\ ‘Tm"Ta/\
| G*F-4) | 0 | 00 0O © Ty -Tis
O | (WE 0 0 | 0600 Tay || =T1y=T,s
06 0 (WFa-#)1 0 | 0 0 Ba | [ -Ty
| O | (WFy®) | 0| O Ty o) 4.3, 7
O | (WFuhO o | Toy | | -Tas (4.2.7)

|
0

0
o
0
0

The ones are located next to the diagonal and at N elements
away from the diagonal element. Any of these elements will
be zero instead if they correspond with elements on the
boundary of the problem. The following conditions incorpate

the boundary conditions (see Eq4.1.13 and £q 4.1.14):

- - - 4.2.8
Tig=Tsg =Ty =0 ( )
- 7T A (4.2.9)
>
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AN N e SN T T e T N I N R T e et e T N A e B




S A A AN A oA R L A

- b, 5 vt A & £ & 1 K ddndall B e AL SIS A AN LN AR A (LA L 8 T T T T T

Eq 4.2.7 has the form of:

AT=8

(4.2.10)

Eq 4.2.10 can be solved by the Gauss elimination to get the

solution for T at the nodal points.

4.3 Method of Weighted Residuals Solution

Let T(x,y) be approximated by the following expansion:
(4.3.1)

TN@C,)’) = ﬁlzﬁvi“-xx) C; ly)

Then use Eq 4.3.1 to reduce Eq 4.1.15 to am ordinary
differential equation which will be solved by the method

Green's Functions:

A N ”
%—T%‘-‘ ZI/"(""'.‘) ci €y (4.3.2)
is N .
» Ty 2 Cily) iz a[',_‘ - (ir)] (4.3.3)
o A d=1

s e

LS

The residual R(x) is:

P

Rix.y) = ?%-Tf,q- 3_;;{ + Flsy) TI\/("’77’) (4.3.4)

Substitute Eq 4.3.2 and Eq. 4.3.3 into Eq.4.3.4 and simplify
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N
...\l. o
Fote e .
i:':-::: A to get:
¥ “ . . ."a . . \
- . 1-2) + Cily) (i i)~ it}
Riny)= i{c. () li=e 1 (1) { (4.3.5)
i= +F(x,y)4r.'(l—4,)]‘§
Multiply by the shifted Dirac Delta weighting functions and
integrate to get (see Eq 3.5.1 ):
= e e (4.3.6)
0= 2 { ci'ty)= 1)) 3
1= LT W ;
teily) [ {-~l-¢,j(:4’)} + F(g,y)%-'(l—a,)]}
The only way that this equation can be solved is if each
term for a different i value is equal to O:
'
o 0=C;" () #; (1-23) (6.3.7)
. '-l . N ;
+ C.'(y){-/)aJ' { :—l—/pj(lfl)}fF(aJ’y)@; (I—ﬁ,)J}
This equation can be simplified into the following
differential equation:
3 ) fi(p =0
Ci'(y) T Cily gty = (4.3
. I— - . - '
Where €3 (y) = i(inl -2 in] + Flx,y) (4.3.9)
4% (1-25)
Next solve Eq 4.3.8 using a Laplacian Green's Function to
get (see Eq 2.1.12):
.-::;-
L S .
!‘.‘Q
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Cily)= (G C:'(y')" C'(Y):t;'é]y'.a (4.

fS,,' Cily) £i(y") Gly,y?) oy’

Boundary Conditions are:

Gly,0)= G(ysN=0 5 C;j(6)=O (4.

(4.

c:()# 0O

The Laplacian Green's Function is (see Eq 2.2.13):

/ -y’ » /
Gy lysy?) = YY) fev <y

YI(I")/> *’V y>7/ (4.

The derivative of the Green's Function at y'=1 is:

o—;iy G,_(Ys)"),ylzl = - y

Therefore Eq 4.3.10 becomes:

/ [
C;(y) = )/C; () + fo C?(y')'f;J(YI>6(V7YI)J/(4'

This can be put into the matrix form:

E.’ = 76;(/) + (Gf) BZ (4.
Therefore:
(T - (ﬁ)"ﬁ')'&???ci(’) (4.

(4.

.10)

.11)

.12)

.13)

.14)

.16)

7))




RO
{. To find the boundary conditions at y=1 use the following
%35 expansion: N
.‘.‘ -

.:“t . ]

e X cos THin = Z 7 (1-=2;)C; (1)

J A =1 (4.3.18)

3
_{. This equation can be turned into the following matrix
- equation:

. = __ —

N A cay =258
o . 7 (4.3.19)
-"- ' w.
<, ce e . - 3. - =2 . Cos i
- Ry = % (1-x) B =2y cos P (4.3.20)

e
‘,':'.'

R

2 Eq 4.3.19 can be solved by Gauss elimination to get the

N ‘:: to substitute into Eq 4.3.17 which can then be solved for
.

‘{ﬁ The main probem with this method is that turns out to
3: be a function of the x wused in the displaced Dirac Delta
-

' Functions. As a result we have to solve N ordinary

. differential equations for for each x for a total of N#N

1$f differentials equations solved (where N is the number of

Gt nodes along each axis).

4.4 Alternate MWR Solution
C,

_E: Another solution to Eq 4.1.15 wuses the following
L,
ﬁﬁ expansion for T(x,y):
bl e
ot NG
ol 46
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v — W T W N WL WLV WL E oW W LRLY W e L LTI e el e T8 T e T et e e,
e gt pae dtISACIb i St et NS R B bl LRI AL L R P Ly e S A LAY L

-~ Ty (ray) = {5.'”(5”4/) cily)

w3 1 (4.4.1)

This expansion gives the following expansion for the

residual:

'a &
121 . X
* Sinlimrz)
Use the displaced Dirac Delta fuctions as weighting

functions and integrate to get:

0= '§' sinline) ;) - 7 cily) r DR, 3

o=

Again the only way this equation can be satisfied is if cach

@ term for constant i is equal to zero:
- S
C;"(y)fc.‘(y)[ Flx;,y) = (im) J (4.4.4)

Where F(x,y) is Eq 4.1.16. This equation can be changed into

(see Eq 4.3.13):

! Y
Cily)= YC"(’)-" SOJVIG.'(Y’)[F("JW) - ("”>J(A.4.5)
: (’(Yv)")

Eq 4.4.4 can be turned into the following matrix equation:

- S5 e

a = 76;(') r D¢ (4.4.6)
(,Hj\)%,l: F(X,js)’l) G(Y"b)’f—> (4.4.7)
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' Eq 4.4.6 can be solved to get:
s
DA
e = E R e— —
Ngs (T-H D)C, = Y c; (1) (4.4.8)
e
This equation can be solved by the Gauss elimination method.
4.5 Results
This section presents the results of solving of Egq
4.1.15 by the Method of Central Finite Diffferences and the
Method of Weighted Residuals using a polynomial series ([Lq
4.3.1) and sine series (Eq 4.4.1) to reduce the partial
D differential equation to an ordinary differential equation

which is then solved by the Green's Function method. Table 7
shows the results of the CFD method and shows the exact
result on the line below for 2x2 and 3x3 interior nodal
points. Table 8 shows how the relative percentage error near

the center decreases as the number of nodal points

increases. 6x6 nodal points was as large as the program run

Py

ﬂ]l_

on this Apple III could handle. The CFD method generates a

c.}a.-‘

FEES
AP

tridiagonal matrix of size N*¥N by N*¥N which needs a number

Hl of operation of order N*¥N to solve on & computer.
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T
ﬁ: 0o Table 7. 2-D CFD/Exact Solutions at Each
j’ Point for N=2 and N=3
x
.
N N x=.3333  x=.6666
X 2 y=.6666 0.169342 0.196272
", 0.166667 0.192450
N y=.3333 0.483753 0.561300
ol 0.481125 0.555556
-%
j x=,2500 x=.5000 x=.7500
3 y=.7500 0.161330 0.247200 0.201088
0 0.160041 0.244981 0.198874
*’\
y=.5000 0.082402 0.126317 0.102830
- 0.081660 0.125000 0.101474
)
. =.2500 0.022097 0.033879 0.027586
o 0.022097 0.033825 0.027459
3
l: Table 8. Relative Percentage Errors Near

the Center for 2-D CFD for
Various N

N Error(7%)

R

Yo
04 2 1.98

3 1.05

- 4 0.78

b 5 0.50

j 6 0.40

‘.
W4

Table 9 shows the results using the polynomial series, the

; sine series, and the exact result (in that order) at each
;} nodal point for 2x2 and 3x3 interior nodal points. Table 10
- shows the examples of the best and worst relative percentage
f: errors for both methods for 2x2, 3x3, 4x4, and 6x6 interior
jg nodal points.
- As can seen the MWR method combined with the Green's
v P,

N ﬁy
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Function method did not give very good results. In fact, the
best results came in the 2x2 case and got worse for for
larger results. Besides the bad accuracy, another problem is
that the MWR plus Green's Function method uses considerably
more operations. The differential equations for c,;(y) (Eq
4.3.6 and Eq 4.4.3) depend on the value of the Xj chosen in
the Dirac Delta weighting function used in the Collocation
Method , so there are N equations for N xdvalues. Each of
these equations generates a dense matrix of order N which
require N*¥N*¥N operations each to solve. As a result the
total number of operations required is of order N to the

fifth for MWR/Collocation plus Green's Function method

versus N*¥N for the CFD method.
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S Table 9. MWR Results:x (l-x), sin(ijt x), and Exact
- at Each Point for N=2 and N=3
-2
AN N x=.3333 x=.6667
n\“-:
e 2 y=.6667 0.057980 0.200274
N ' 0.055061 0.192389
0.055556 0.192450
“a y=.3333 0.057221 0.018779
X 0.041218 0.152943
£ 0.048113 0.166667
' x=.2500  x=.5000  x=.7500
&€y
e 3 y=.7500 0.028060 0.104077 0.202004
{g 0.032901 0.118357 0.216602
; 0.027459 0.101474 0.198874
Ry
y=.5000 0.028303 0.110059 0.230413
N 0.030039 0.114432 0.233472
‘-",' 0.033825 0.1.2500 0.244981
YAS
:j y=.2500 -0.027734 -0.077424 0.027208
74 0.018811 0.072418 0.150224
Q 0.022097 0.081660 0.160041
<
o Table 10. Relative Percentage Errors for 2-D MWR
v for Different N and Two Weighting Functions
Lo
! N x (1-x) sin(if] x)
N ﬁ Best Worst Best Worst
N 2 4,07 18.93 -0.03 -14.33
3 1.57 -225.53 -8. 5 19.82
NN 4 0.66 -164.09 -3.61 51.89
2N 6 -0.70 101.90 -4.89 189.95
:\',\
>
o
R 4.6 Separation of Variables
N
.‘? The method of separation of variables can be used to
7 get the analytic solutions to partial differential
..$ ..;:. equations. Another possible method of solving a 2-D partial
~3 -
= 51
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diffential equation would be to use the method of separation

Sl

g of variables to turn the partial differential equation into
.'
w two ordinary differential equations which are then solved

using the Green's Functon method. Consider a general

heat conduction problem given in figure 5.

T= H(x)
VAT
0 = - FCXQY) (@)

0]

m Figure 5. General Heat Conduction Problem
a - -
V T(A’,Y)"' F(”,Y) (4.6.1)

Boundary Conditions: T(a,y)= T(/,y): T{¢,0)=0(4.6.2)
Tlx,)= Hlx)

-

-? A partial differential equation can be only separated
g
b if it takes the following form (Ref 4:498-499):
d -
3 74T (2, y) + [a?+ ¥+ [Tl =0 (4.6.3)
)
4
- Comparing Eq 4.6.1 and Eq 4.6.3 we see that only if
P vﬁ?o
y N
¥
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F(x,y) takes the following form will Eq 4.6.1 be separable:
F(X.,y)= faaf{:/&)‘ff)(y)_] T(x,y) (4.6.4)

Letting T be separable we get the following results:

T(x,y) = X Yty) (4.6.5)
X”(4‘)+ [b;‘*&(aa)JX('z):O (4.6.6)
Boundary Conditions: )((0)9)‘(’):0 (4.6.7)

Y(y) + (a?-b? +4(0] Y(p)=0 (4.6.8)
Boundary Conditions: \/(0) = )’(/):é (4.6.9)

Eq 4.6.6 and Eq 4.6.7 could now be solved using the Green's
Function method. The problem that arises is that there is a
pair of differentila equations (Eq 4.6.6 and Eq 4.6.8) to be
solved for each choice of the separation constant a*a. As an
example, the 2-D problem that we have been considering in

the previous sections (Eq 4.1.12) becomes:

/\”(/b)-!- (aa+£ tan lg—‘ Y XN = 0

(4.6.10)
Boundary Conditions: MN(0¢)= ¥(/)=0O (4.6.11)
" @ > T b8 ' -
+ -— o 41‘ hed
Y'(y)+ (b?-a rL et ZXY V=0 o612
Boundary Conditions: Y(o): Y() =0 (4.6.13)
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For this problem there is only one valid choice for the
separation constant:

a_n¥

a Af (4.6.10)

The difficulty that arises in the general problem, is
finding the proper choice(s) for the separation constant and
the proper weighting of each valid solution such that the
weighted sum of products of individual solutions matches the
boundary conditions. Combining this difficulty with the
fact that potentially a large number of ordinary
differential equations will have fo be solved we see that

q.; this method is not a very viable or attractive method of

solving partial differential equations.
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5. CONCLUSIONS AND RECOMMENDATIONS

The purpose ot this thesis was to investigate a number
of techniques that can be used to solve ordinary and partial
differential equations. The main interest was on the use of
Green's Functions in solving differential equations. The
Method of Weighted Residuals was also used. The method of
central finite differences was used since it is a commonly

used method and it was desired to see how the other methods

compared to it.

5.1 One Dimensional Problem

A one dimensional equation was used that could be
solved using both the Laplacian Green's Function and the
Helmholtz Green's Function. The Laplacian solution is an
integral equation. The one dimensional equation also had
nice solutions using the Galerkin and Collocation methods
which are subtypes of the Method of Weighted Residuals. The
Galerkin and Collocation methods both gave very accurate
results for only a small number of points used. The
Collocation method gave better results than the Galerkin
method. The central finite difference method was easy to
accomplish for this problem. The results were that CFD
method and the Laplacian Green's Function method gave

exactly the same results (to within accumulated round-off
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error). This result was surprising considering the
completely different matrices in each method. However, a
previous thesis had also gotten a similiar result. The
Helmholtz Green's Function method gave slightly better
results than the CFD and Laplacian methods. The Galerkin and
Collocation methods both gave much better results than the

CFD or either Green's Function method.

5.2 Two Dimensional Problem

In the two dimensional case a partial differential
equation was chosen that was separable and had the form of
the Helmholtz Eq. The CFD method gave reasonably good
results. Using the Method of Weighted Residuals to reduce
the partial differential equation to an ordinary
differential equation gave very bad results for both
approximations that were tried. The method of separaion of
variables was considered as a way of reducing a partial
differential equation to ordinary differential equations
which would then be solved using Green' Function method.
This method was not actually solved because of difficulties
in choosing the separation constants and in weighting the
various solutions that each sepration constant generates. A
two dimensional Green's Function solution was looked at
during thesis preparation but the results were not presented

in this thesis. The main difficulty was in the summation of
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Function.

> 5.3 Recommendations

When solving a one dimensional ordinary differential

equation, the Weighted Residuals Methods should be

considered. They appear to give very good results., They have

‘93; the advantage that an approximate functional form is

v o A

'?Rf generated which can be used to generate an answer at any
‘t" point and not just at the nodal points used. One

N

;22 disadvantage of Weighted Residual Methods is that the sizes

1f% of the relative errors vary considerably over the range of
.

i ‘:> integration. The Method of central finite differences

::f§ h involves fewer operations than Weighted Residual Methods and

jg? the Green's Function methods. For simple problems, it is
At: preferable to the Green's Function methods. For really

3§: complicated pfoblems the Green's Functions methods may give
L'

.E?g better results, but this was not actualy shown to be true.
- Using a Weighted Residual method to reduce a two

;fgi dimensional partial differential equation to a one

;Eif dimensional differential equation which is then solved by

l:ﬂ Green's Functions does not appear to work. The central

;:ff finite difference method is much preferable as a method of

Sxx: solution to the two dimensional problem.
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